The influence of total gas pressure and atmosphere composition during ion cleaning step on S-phase coating formation

Justyna Słowik*, Sebastian Fryska, Jolanta Baranowska

West Pomeranian University of Technology, Institute of Materials Science and Engineering, Szczecin, Poland; *justyna.slowik@zut.edu.pl

Various ion sputtering parameters were applied prior to the deposition of S phase coatings in order to determine their effect on the efficiency of cleaning an austenitic steel surface. For this purpose, two types of atmospheres were used (100% Ar and 5% Ar + 95% H₂) at two different pressures (1.33 Pa and 2.67 Pa). In addition, substrates with two different initial states — without polishing and with polishing — were investigated. The thickness of the diffusion layer, obtained in the austenitic substrate after depositing an S-phase coating by magnetron sputtering, was used as a measure of the surface cleaning effectiveness (passive oxide layer removal). The research showed that all the considered parameters had a significant effect on the effectiveness of the cleaning treatment. It was found that the initial state of the substrate has an influence on the thickness of the diffusion layers, with thicker layers obtained on non-polished substrates. The total gas pressure affects the substrate cleaning effectiveness in different ways depending on the gas composition used. It is possible that a physical sputtering mechanism occurs in the case of argon and a chemical reduction mechanism in the case of hydrogen. In addition, it was found that the degree of surface cleaning determines the texture of the S phase coatings.

Key words: S-phase, magnetron sputtering, ion cleaning, austenitic stainless steel.

1. INTRODUCTION

Austenitic stainless steel is a commonly used construction material for applications in which high corrosion resistance is required. However, certain applications are limited by the low hardness and wear resistance of this steel. One of the ways to improve its mechanical properties is thermochemical surface treatment at temperatures up to 500°C. During low-temperature nitriding or carburizing a diffusion layer of S-phase is formed [1], which is considered to be a carbon or nitrogen supersaturated solution in austenite. S-phase is characterized by high hardness and wear resistance and its corrosion resistance is comparable to that of austenitic steel. An alternative method is to deposit S-phase as a coating on an austenitic substrate. [2, 3].

S-phase coatings can be obtained, for example, by reactive magnetron sputtering of austenitic steel in a nitrogen atmosphere. The production process consists of two main stages: an ion cleaning of the substrate followed by sputter deposition of the target material in a reactive plasma. During the ion cleaning step the substrate bias voltage is much higher than in the sputtering stage. As a result, ions reaching the substrate remove impurities instead of depositing as a coating [4]. In the case of austenitic steel, this process can lead to removal of the oxide passive layer usually present on the surface. As observed in previous research [5, 6], such a procedure can lead to diffusion layer formation as a consequence of nitrogen diffusion from the coating into the substrate. Such a diffusion layer, with nitrogen content lower than that in the S-phase coating, forms a gradient interlayer that is potentially beneficial for improving the coating adhesion.

Nitried diffusion layer formation in austenitic stainless steels has been widely studied for low-temperature gas or plasma nitriding [7-9]. Previous research, concerning the influence of surface activation on diffusion layer formation in thermochemical treatment [10, 11], concluded that the diffusion layer thickness depends strongly on the method of surface activation. Moreover, in the case of plasma activation, the type of the gas and the process parameters play an important role in removal of the passive layer. From the previous studies, it can be concluded that, for the same diffusion treatment conditions, the diffusion layer thickness is determined by the effectiveness of the surface activation process.

The main objective of this work was to investigate the influence of ion cleaning parameters applied before reactive S-phase coating deposition on the diffusion layer formation in an austenitic substrate.

2. MATERIALS AND METHODS

S-phase coatings were deposited by reactive magnetron sputtering with different ion cleaning parameters as shown in Table 1. The bias voltage was 200 V and was a constant parameter of the ion cleaning step.

The deposition chamber was a cylinder of 300 mm in diameter and 400 mm high. The magnetron guns with targets were located at the bottom of the chamber. Two targets of 50 mm in diameter were used: X10CrNi18–100 austenitic stainless steel was located 125 mm from the substrates, which were made of the same material. The coating deposition parameters used for all samples were the same: substrate temperature: 350°C, time: 180 minutes, gas pressure: 0.80 Pa, atmosphere composition: Ar/N₂ = 67%/33%, current applied to targets: 2×500 mA, bias power: 2 W (voltage ~50 V). In every case, two substrates with different surface states were used. The first was in the as-delivered state with roughness Ra = 0.039 μm (referred to in the text as N), and the second was wane w tekście.

Table 1. Ion cleaning parameters and process identification used in the text

<table>
<thead>
<tr>
<th>Total gas pressure, Pa</th>
<th>Gas composition during ion cleaning step</th>
<th>100% Ar</th>
<th>5% Ar + 95% H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>1.33/100</td>
<td>1.33/5</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>2.67/100</td>
<td>2.67/5</td>
<td></td>
</tr>
</tbody>
</table>
polished to a mirror-finish with roughness $R_a = 0.015 \mu m$ (referred to as P). The latter was prepared by grinding on sandpapers with various grain size, followed by polishing using diamond pastes. Further vibro-polishing using an $\mathrm{Al}_2\mathrm{O}_3$ suspension (0.05 μm) was applied to reduce the final roughness of the samples and to remove the deformed ferrite layer resulting from previous mechanical operations. Before the deposition process all substrates were ultrasonically cleaned in acetone and dried in hot air.

The phase composition of the coatings was investigated by means of X-ray diffraction using an X'PERT PANalytical diffractometer with Cu Kα radiation. Bragg-Brentano geometry was applied with a 2θ angle range of 30° to 120°. The surfaces and cross-sections of the samples were studied using a scanning electron microscope (SEM) Hitachi SU-70. The glow discharge optical emission spectrometry (GDOES) method (GD-PROFILER 2, HORIBA Jobin Yvon) was used to assess the nitrogen distribution in the cross-sections of the samples.

3. RESULTS AND DISCUSSION

The diffraction patterns of all coatings revealed the presence of the S-phase peaks (Fig. 1). The peaks of the (200) plane family were
the highest for the majority of the samples. Exceptions to this were the 1.33/5N, 1.33/5P and 2.67/100P coatings, in which the S-phase peak of the (111) plane family was the most intensive. The diffraction patterns of all samples also showed the austenite peaks of the (111), (200), (220) and (311) plane families. Furthermore, additional peaks between the S-phase and austenite peaks could also be detected. Previous research suggests that these can be attributed to the diffusion layer formed in the substrate [5, 6].

The detection of the diffusion layer peaks is usually problematic due to their low intensity and large width [11], and their location near other, much higher intensity, S-phase peaks of the same plane family. Nevertheless, in many cases they can be seen either as separate peaks or as an asymmetry in the S-phase coating high angle side peaks. Diffusion layer peaks are clearly visible in the diffraction patterns of all the samples cleaned at a total pressure of 2.67 Pa, with the exception of the polished sample cleaned using a 100% Ar plasma (2.67/100P). Very small peaks of the (111) plane family can be also distinguished in the diffraction patterns of the 1.33/100P and 1.33/100N samples. It can be observed that diffusion layer peaks are not detected in the samples with the strong (111) texture in the coatings.

All coatings demonstrated a similar porous morphology consisting of conical crystallites separated by voids. This may indicate that the process parameters correspond to zone I according to the Thornton model [12]. A typical example of a microstructure is shown in Figure 2.

With the majority of samples, the presence of the diffusion layer in the austenitic substrate could be confirmed by SEM. The thickness of the S-phase coatings and diffusion layers measured on cross-sections of the samples was in the range of 1.4 to 2.35 μm, which explains the presence of austenite substrate peaks in the diffraction patterns (Fig. 1). The thickness of the diffusion layers is shown in Figure 3. Diffusion layers with thickness in the range of 0.4 to 0.8 μm were formed in all substrates in the as-delivered state. The diffusion layers formed in the polished substrates were much thinner, 0.1 to 0.5 μm, and in one of the polished samples (1.33/5P) the diffusion layer formed in the substrate [5, 6]. A typical example of a microstructure is shown in Figure 2.

Figure 4 shows the distribution of nitrogen in the samples measured by the GDOES method. In all profiles two regions can be distinguished. The first region has a relatively high and constant nitrogen concentration extending to a depth of ca. 1.4 to 2.4 μm depending on the sample. This is followed by a second region in which the nitrogen content decreases more abruptly. The decrease is even more abrupt in the case of the 1.33/5P sample. The first region with high nitrogen content corresponds to the S-phase coating. Its depth correlates well with the coating thickness measured microscopically on the cross-sections. The second region represents the nitrogen distribution characteristic for the diffusion layers formed in the austenitic substrates, as usually observed during the nitriding process [13].

The results indicate that the ion cleaning process parameters and the initial surface state of the substrate both have an influence on the diffusion layer thickness. In view of previous results [10], this means that they influence the cleaning effectiveness and surface activation.

When analysing the effect of the gas composition used for cleaning and the total gas pressure, consideration should be given to the different possible mechanisms in which the gas can interact with the passive layer. Argon ions are chemically inert, have a relatively high atomic mass and can remove oxides through physical sputtering. If a lower pressure is applied during the cleaning step, ions are able to obtain higher kinetic energy due to the longer mean free path, so that oxide sputtering can be more effective in lower pressure conditions. This mechanism could explain the observed decrease in the diffusion layer thickness with increasing total gas pressure during the sputter cleaning phase (Fig. 3a).

The opposite trend was observed when using an atmosphere with hydrogen as the main component (Fig. 3b). Hydrogen ions have low atomic mass, so under the same conditions of pressure and bias power their kinetic energy will be significantly lower. However, unlike argon, hydrogen is a reactive gas and can chemically reduce oxides present on the surface. In this way, increasing the total pressure, thus increasing the concentration of hydrogen ions in the atmosphere, can have a positive influence on the oxide reduction rate. Such a mechanism of ion cleaning would explain the observed increase in diffusion layer thickness with pressure for the hydrogen-rich gas (Fig. 3b).

For all of the atmospheres used for cleaning in this study, the thickness of the diffusion layer obtained for polished substrates was significantly lower than that for samples without polishing. This effect was unexpected. It was expected that the thinner oxide layers remaining after polishing would result in a greater susceptibility to ion cleaning. Two possible explanations can be given: the nature of the oxide layers produced on the as-delivered and the polished substrates may be different, and/or the thin, plastically deformed subsurface layer present in the unpolished substrate may increase the nitrogen diffusion in austenite due to an increased number of structural defects. However, further studies are clearly needed in order to investigate these hypotheses.

Detailed analysis of the surfaces of the coatings revealed differences in their appearance. Some surfaces showed a homogeneous orientation of the coating grains, which corresponded to the occurrence of strong textures in the corresponding diffraction patterns. The characteristic appearance of a coating surface with a (111) texture is shown in Figure 5a and with a (200) texture in Figure 5b. With some samples patches with a varied arrangement of coating grains were visible. Especially interesting is that the shape of these patches may correspond to the shape of grains in the austenitic substrate. This effect was particularly evident with the coatings deposited on polished substrates. The occurrence of such patches was observed in samples 2.67/100P, 2.67/5P and 2.67/100N.

An example image of a patchy coating surface with a dominant (111) orientation is shown in Figure 5c and with a dominant (200) orientation in Figure 5d. Small patches of (111) oriented grains were also observed in sample 1.33/100P. The presence of areas with different grain orientations is reflected in the diffraction patterns (Fig. 1). For these samples, peaks of both (111) and (200) plane families were observed.

In addition to the above, for both as-delivered and polished states, a relationship can be observed between the appearance of...
Fig. 3. Diffusion layer thickness for austenitic samples with S-phase coatings deposited by reactive magnetron sputtering method using different gas compositions at different total gas pressures during ion cleaning and different initial surface states measured on SEM cross-sections of the samples.

Rys. 3. Grubość warstw dyfuzyjnych w próbkach austenitycznych z powłoką z fazy S wytwarzaną metodą reaktywnego rozpylania magnetronowego w różnych mieszaninach gazów i ciśnieniach całkowitych stosowanych podczas oczyszczania jonowego oraz różnych stanach wyjściowych powierzchni mierzone na przekrojach poprzecznych SEM.

Fig. 4. Distribution of nitrogen in the austenitic samples with S-phase coatings deposited by reactive magnetron sputtering method using different gas compositions at different total gas pressures during ion cleaning and different initial surface states measured by GDOES method.

Rys. 4. Profile azotu w próbkach austenitycznych z powłoką z fazy S wytwarzaną metodą reaktywnego rozpylania magnetronowego w różnych mieszaninach gazów i ciśnieniach całkowitych stosowanych podczas oczyszczania jonowego oraz różnych stanach wyjściowych powierzchni metodą GDOES.
differences in the local grain orientation and the diffusion layer thickness obtained. The coating deposited on the as-delivered substrate with the thinnest diffusion layer (1.33/5N) had a dominant (111) orientation, whereas those with the thickest diffusion layer (1.33/100N, 2.67/5N) had a (200) orientation. In the sample with a slightly thinner diffusion layer (2.67/100N) the (200) orientation was dominating, but small areas with (111) oriented grains were also present.

Similar relations were observed in the coatings deposited on the polished substrates. In the coating with the thickest diffusion layer (1.33/100P) the (200) texture dominates, but small (111) oriented areas are also noticeable. The coating with the thinnest diffusion layer (1.33/5P) showed a strong (111) texture. The coatings with diffusion layers of intermediate thickness had large patches with differently-oriented grains. The diffusion layer is thicker in the sample where (200) orientation dominates (2.67/5P), and thinner in the sample with predominant (111) orientation. If it is assumed that the diffusion layer thickness correlates with the substrate cleaning effectiveness, it can be stated that on more effectively cleaned substrates show a dominant (111) orientation. The formation of differently-oriented patches within the coating, the shape of which reflects the shape of the substrate grains, suggests that the substrate cleaning effectiveness depends on the substrate grain orientation due e.g. different oxide layer thickness [14]. Such a relationship between oxide layer removal and grain orientation has been confirmed previously [11]. Further evidence for the correctness of the hypothesis could be the difference in diffusion layer thickness in variously-oriented austenitic substrate grains. However, due to the small thickness of the diffusion layers obtained, microscope measurements are unreliable.

The results obtained indicate that the substrate cleaning effectiveness affects not only the thickness of the diffusion layer but also the preferential growth direction of the coating grains, as shown in Figure 6.

4. CONCLUSIONS

1. It was demonstrated that the total gas pressure and its composition have an important influence on the effectiveness of the ion cleaning step applied prior to reactive magnetron sputtering and, as a consequence, on the diffusion layer formation in austenitic substrates during S-phase coating deposition.

2. The total gas pressure affects the substrate cleaning effectiveness in different ways depending on the gas composition used. In the case of argon, a positive effect on the diffusion layer thickness is observed when the total gas pressure decreased. In the case of a hydrogen-rich gas the opposite effect is observed. It is likely that this is attributable to different mechanisms of interaction of these gases with the oxide layer: a physical sputtering mechanism in the case of argon and a chemical reduction mechanism in the case of hydrogen.

3. It is also hypothesized that the ion cleaning effectiveness governs the preferential orientation growth of S-phase coatings.
substrate cleaning promotes the growth of (111) oriented S-phase coating, whereas the (200) orientation predominates with more effectively cleaned surfaces.

4. The initial state of the substrate has an influence on the thickness of the diffusion layers. Thicker layers were obtained on non-polished substrates.

ACKNOWLEDGEMENTS

This work was partially supported by National Science Centre, Poland, within the grant No. DEC-2017/01/X/ST8/01992.

REFERENCES

Wpływ całkowitego ciśnienia gazu i składu atmosfery w oczyszczaniu jonowym na tworzenie powłok z fazy S

Justyna Słowik*, Sebastian Fryska, Jolanta Baranowska

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Inżynierii Mechanicznej i Mechatroniki, Instytut Inżynierii Materiałowej, Szczecin; justyna.slowik@zut.edu.pl

1. CEL PRACY
Faza S, uznawana za przesycony roztwór azotu w austenicie, może być otrzymywana nie tylko wskutek konwencjonalnego azotowania, lecz także metodą reakcyjnego rozpylania magnetroanowegostalistej, umieszczonej w atmosferze argonu. Wytworzenie takiej powłoki na stali austenitycznej poprawia jej twardość i odporność na zużycie. Przed procesem napisania stosuje się zwykle oczyszczanie jonowe, które w przypadku stali austenitycznej może prowadzić do usunięcia warstwy pasywnej tlenków. W ten sposób jest możliwe powstanie warstwy dyfuzyjnej w podłożu w efekcie procesów dyfuzyjnych zmierzonych tą samą metodą przedstawiono na rysunku 3. Wyniki pozwoliły na postawienie hipotezy, że w zależności od rodzaju zastosowanego gazu mechanizm oczyszczania jonowego może być różny. W przypadku użycia czystego argonu oczyszczanie następuje wskutek uderzania w podłoże jonów argonu o wysokiej energii kinetycznej. Obniżanie ciśnienia gazu, a tym samym zwiększenie drogi swobodnej jonów, przyczynia się do zwiększenia efektywności oczyszczania. Zmniejsza to zwiększeniu efektywności oczyszczania. Obrany SEM przedstawiające powierzchni warstw są zróżnicowane. Niektóre powierzchnie cechował jednorodny układ ziaren powłoki i, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki i, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest szczególnie interesujące, miejsca o odwrocie orientacji ziaren powłoki, co jest特别声明게 말하는 경우에만 적용, 일반적으로는 사용하지 않는 언어로 표현해야 합니다.